首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3811篇
  免费   542篇
  国内免费   352篇
电工技术   158篇
综合类   751篇
化学工业   527篇
金属工艺   207篇
机械仪表   222篇
建筑科学   20篇
矿业工程   21篇
能源动力   129篇
轻工业   19篇
水利工程   8篇
石油天然气   5篇
武器工业   8篇
无线电   895篇
一般工业技术   415篇
冶金工业   40篇
原子能技术   4篇
自动化技术   1276篇
  2024年   13篇
  2023年   186篇
  2022年   242篇
  2021年   196篇
  2020年   214篇
  2019年   183篇
  2018年   194篇
  2017年   254篇
  2016年   239篇
  2015年   292篇
  2014年   307篇
  2013年   347篇
  2012年   443篇
  2011年   436篇
  2010年   212篇
  2009年   290篇
  2008年   67篇
  2007年   237篇
  2006年   181篇
  2005年   51篇
  2004年   22篇
  2003年   16篇
  2002年   26篇
  2001年   21篇
  2000年   12篇
  1999年   11篇
  1998年   3篇
  1996年   8篇
  1995年   1篇
  1991年   1篇
排序方式: 共有4705条查询结果,搜索用时 31 毫秒
1.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
2.
影响稀土灼烧工艺的因素十分复杂,关系产品质量稳定及能耗,现行工艺存在优化空间。通过剖析灼烧窑中温度和湿度分布状况,运用κ-ε双方程湍流模型、流体传热、多孔介质传热等理论,按特定组分运输模式,建立灼烧过程质量、动量和能量耦合传递数学模型。设置不同边界导入Fluent环境对数学模型进行仿真试验,完成数据处理实现工艺参数优化。结果表明所建模型能准确反映灼烧窑中温湿度场分布及变化,且最终仿真结果与实际灼烧后的产品湿度含量相符合。  相似文献   
3.
Lead-free (K0.5Na0.5)NbO3-based (KNN) piezoceramics featuring a polymorphic phase boundary (PPB) between the orthorhombic and tetragonal phases at room temperature are reported to possess high piezoelectric properties but with inferior cycling stability, while the ceramics with a single tetragonal phase show improved cycling stability but with lower piezoelectric coefficients. In this work, electric biasing in-situ transmission electron microscopy (TEM) study is conducted on two KNN-based compositions, which are respectively at and off PPB. Our observations reveal the distinctive domain responses in these two ceramics under cyclic fields. The higher domain wall density in the poled KNN at PPB contributes to the high piezoelectric properties. Upon cycling, however, a new microstructure feature, “domain intersection”, is directly observed in this PPB composition. In comparison, the off-PPB KNN ceramic develops large domains during poling, which experience much less extent of disruption during cycling. Our comparative study provides the basis for understanding the relation between phase composition and piezoelectric performance.  相似文献   
4.
This publication contains the thermodynamic results received by the drop calorimetry method. The experiments were conducted for four different cross sections, at the temperature of 1080 K. The investigated alloys were as follows: (Ga0.75Li0.25)1-xGex, (Ge0.50Li0.50)1-xGax, (Ga0.50Li0.50)1-xGex, (Ga0.25Li0.75)1-xGex. The mixing enthalpy changes measured for all four cross sections of the Ga-Ge-Li system are characterized by negative deviations from the ideal solutions. The Muggianu model with the ternary interaction parameters was applied to elaborate the experimental data of the mixing enthalpy change with the use of the optimized thermodynamic parameters of the binary systems available in the literature.  相似文献   
5.
《Ceramics International》2019,45(16):19689-19694
Li–Al–B–Si–O (LABS) glass-ceramics with a sintering temperature of 600 °C were studied for ultra-low temperature co-fired ceramics (ULTCC) applications. The crystal phase of LABS glass-ceramics is dendritic β-spodumene. The permittivity and dielectric loss of LABS glass-ceramics are εr = 5.8 and tgδ = 1.3 × 10−3 at 10 MHz, respectively. The coefficient of thermal expansion (CTE) of LABS glass-ceramics is 3.23 ppm/°C, which is close to that of silicon. The dielectric and thermal properties of LABS glass-ceramics are closely correlated to the degree of its crystallization. The permittivity decreases continually while the dielectric loss decreases first and slightly increases with the increasing of crystallization of β-spodumene. The CTE of LABS glass-ceramics decreases as β-spodumene crystallized from LABS glass. The crystallization kinetic and mechanism of LABS glass-ceramics indicate that the β-spodumene crystallizes in a two-dimensional interfacial growth mechanism due to the migration of Li-ions. The diffusion coefficients derived from energy-dispersive X-ray spectroscopy (EDS) results indicated that both Al and Ag electrodes have good compatibilities with ULTCC tapes, which could reduce the cost of multilayer electro-ceramic devices dramatically by using the ULTCC and base metallization.  相似文献   
6.
7.
《Ceramics International》2021,47(24):34159-34169
Given the remarkable performances of rare earth multiferroic ortho-ferrites with magnetic optical and dielectric properties, the Y1-xSrxFeO3 (x = 0, 0.05, 0.1, 0.15) perovskite structure microwave absorbing ferrite materials was successfully synthesized by Sr2+ ions A-site doping based on sol-gel technology in this paper. The XRD of all samples was refined with FullProf software, which confirmed the formation of the orthogonal perovskite structure (SG: Pnma). The SEM and TEM results display the average particles size of the samples is distributed between 110 and 160 nm. The increase of Sr doping concentration leads to the increase of particles size, which may be related to the growth of preferred orientation and incomplete substitution. The XPS analysis shows that Fe3+ was accompanied by the presence of Fe2+ with the doping of Sr2+ ions and oxygen vacancies increased significantly. The samples change from weak ferromagnetic state to paramagnetic state with the increase of Sr content. The minimum reflection loss (RL) of the Y0.95Sr0.05FeO3 samples at 12.2 GHz reached −30.87 dB with thickness of 2.2 mm, where its effective absorption bandwidth (EAB, RL ≤ −10 dB) reached 2.4 GHz (11.3–13.7 GHz). Moreover, the EAB of the Y0.85Sr0.15FeO3 samples reached 2.64 GHz, and the corresponding range is 9.0–11.6 GHz (X-band).  相似文献   
8.
9.
The Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) low-permittivity microwave dielectric ceramics were prepared through solid-state reaction at 1350–1450 °C for 5 h. The relations between microwave dielectric properties and phase compositions for non-stoichiometric Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) ceramics have been investigated. A single CaSnSiO5 phase with abnormally positive temperature coefficient of resonant frequency (τf = + 62.5 ppm/°C) was synthesised at 1450 °C. This composition was an effective τf compensator of CaSiO3 and Ca3SnSi2O9 phases with typically negative τf value. The CaSiO3 second phase was related to the Sn deficiency in the CaSn(1-x)SiO(5-2x) (0 < x < 1.0) composition, whereas the Ca3SnSi2O9 second phase was obtained by controlling the Ca:Sn:Si ratios on the basis of the Ca(1+2y)SnSi(1+y)O(5+4y) (0 < y < 1.0) composition. A promising low-permittivity millimetre-wave ceramic with most excellent microwave dielectric properties (εr = 10.2, Q×f = 81,000 GHz and τf = −4.8 ppm/°C) was produced from the Ca(1+2y)SnSi(1+y)O(5+4y) (y = 0.4) ceramic.  相似文献   
10.
Highly textured TiB2 ceramics were prepared by slip casting an aqueous suspension in a magnetic field of 9 T, followed by sintering using Field Assisted Sintering Technology (FAST). Particle size refinement by ball milling improved both the degree of texturing and densification of the material (RD > 98 %). The sintered material exhibited a Lotgering orientation factor of 0.90, with the c-axis of TiB2 oriented parallel to the magnetic field and FAST pressing direction. The texturing effect induced by the uniaxial pressing was negligible. The textured TiB2 material exhibited a significant anisotropy in mechanical properties; the values of hardness and indentation elastic modulus measured along directions transverse to the c-axis of TiB2 were 37 % and 13 % higher than the ones measured along the c-axis direction. Moreover, the specific wear rate of a surface of textured TiB2 parallel to the field was one order of magnitude lower than a surface perpendicular to the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号